Skip to main content

Buscar

About the Group

This group provides evidence for how organizational strategy models, the management of value chains, the digital transformation of companies, and the dynamics of business families are fundamental elements for designing and implementing strategies and leveraging opportunities in the "new normal."
 

Research lines

• Digital value chain innovation
• Business Optimization Models
• Sustainable value chain design
• Evolution of business models through digital transformation
• Strategic definition in highly volatile environments
• Measuring the digital maturity of organizations
• Digital transformation of value chains
• Digital transformation of the retail industry
• Digital transformation of the financial industry
• Governance
• Growth
• Intergenerational strategies
• Legacy
• Retail experience and customer journey
• Retail frontline management
• New competitors and business models
• Retail format innovation and atmospherics
• Impact of technology on retail
• Sustainable retailing
• Retail metrics and analytics

Leader

Osmar Zavaleta Vázquez - ozavaleta@tec.mx

Members of the thematic area Transdisciplinary Value Chain Analysis

Federico Trigos (Leader)
Eduardo Armando
Evodio Kaltenecker Retto De Queiroz
Federico Trigos Salazar
Francisco Javier Valderrey Villar
Pablo Pérez Akaki

Members of the Organizational Strategy thematic area

Andreas Hartmann (Leader)
Camilo Alberto Castro Gama
Jesús Cuauhtémoc Téllez Gaytán
Julio César Martínez Suárez
Laura Esther Zapata Cantú
Mauricio Cervantes Zepeda
Miguel Angel Montoya Bayardo
Mauro Rodríguez Marín
Raúl Francisco Montalvo Corzo
Regina Gabriela Díaz Creso
Ricardo Buitrago
Rodrigo Eugenio Ortiz Fernández
Sandra Maycotte Felkel

Members of the thematic area Family Businesses

Edgar Ramírez (Leader)
Alberto Daniel Malpica Romero
Aurora Correa Flores
David Salvador Xotlanihua González
Delia Lizette Huezo Ponce
Edgar Rogelio Ramírez Solís
Fernando Sandoval Arzaga
Jorge Eduardo Gómez Villanueva
Marcia Lorena Rodríguez Aldana
María Francisca Fonseca Paredes
Paul Alejandro Delgadillo Fabián
Tonatiuh Najera Ruiz
Verónica Ilián Baños Monroy

Members of the thematic area Transformation of Retail Industry

Edgar Ramírez (Leader)
Alfonso Valdez Cervantes
Ana Dolores Franco Valdez
Ana Valeria Calvo Castro
Emma García Valenzuela
Francisco Jesús Guzmán Martínez
Gustavo César Martínez Lira
Ma Margarita Orozco Gómez
María Andrea Trujillo León
Maria Elena Vazquez Lira
María Lucila Osorio Andrade
Martha Isabel Arévalo Luna

Sobre el Grupo

Aportar evidencia que respalde la forma en que los modelos de estrategia organizacional, la administración de las cadenas de valor, la transformación digital de las empresas, y las dinámicas de las familias empresarias, son elementos fundamentales para diseñar e implementar una estrategia y para poder aprovechar las oportunidades en la nueva normalidad.
 

Líneas de investigación

• Innovación digital de cadenas de valor
• Modelos de Optimización para negocios
• Diseño de cadenas de valor sostenible
• Evolución de modelos de negocio mediante la transformación digital
• Definición estratégica en entornos de alta volatilidad
• Medición de la madurez digital de las organizaciones
• Transformación digital de cadenas de valor
• Transformación digital de la industria del comercio al detalle
• Transformación digital de la industria financiera
• Gobernanza
• Crecimiento
• Estrategias intergeneracionales
• Legado
• Retail experience & customer journey
• Retail frontline management
• New competitors and business models
• Retail format innovation & atmospherics
• Impact of technology in retail
• Sustainable retailing
• Retail metrics & analytics

Líder

Osmar Zavaleta Vázquez - ozavaleta@tec.mx

Miembros del área temática Análisis Transdisciplinar de Cadenas de Valor

Federico Trigos (Líder)
Eduardo Armando
Evodio Kaltenecker Retto De Queiroz
Federico Trigos Salazar
Francisco Javier Valderrey Villar
Pablo Pérez Akaki

Miembros del área temática Estrategia Organizacional

Andreas Hartmann (Líder)
Camilo Alberto Castro Gama
Jesús Cuauhtémoc Téllez Gaytán
Julio César Martínez Suárez
Laura Esther Zapata Cantú
Mauricio Cervantes Zepeda
Miguel Angel Montoya Bayardo
Mauro Rodríguez Marín
Raúl Francisco Montalvo Corzo
Regina Gabriela Díaz Creso
Ricardo Buitrago
Rodrigo Eugenio Ortiz Fernández
Sandra Maycotte Felkel

Miembros del área temática Empresas Familiares

Edgar Ramírez (Líder)
Alberto Daniel Malpica Romero
Aurora Correa Flores
David Salvador Xotlanihua González
Delia Lizette Huezo Ponce
Edgar Rogelio Ramírez Solís
Fernando Sandoval Arzaga
Jorge Eduardo Gómez Villanueva
Marcia Lorena Rodríguez Aldana
María Francisca Fonseca Paredes
Paul Alejandro Delgadillo Fabián
Tonatiuh Najera Ruiz
Verónica Ilián Baños Monroy

Miembros del área temática GAT Transformación de la Industria del Comercio al Detalle

Edgar Ramírez (Líder)
Alfonso Valdez Cervantes
Ana Dolores Franco Valdez
Ana Valeria Calvo Castro
Emma García Valenzuela
Francisco Jesús Guzmán Martínez
Gustavo César Martínez Lira
Ma Margarita Orozco Gómez
María Andrea Trujillo León
Maria Elena Vazquez Lira
María Lucila Osorio Andrade
Martha Isabel Arévalo Luna

Please register here
You will receive personalized information and attention

 

gente escribiendo piezzaron

Tec21 Model: Tec challenges you

Our challenge-based educational model develops the competencies that will enable you to face up to the opportunities and challenges of the 21st century creatively and strategically.

With an education that will accompany you throughout your life, our aim is for you to be aware of the needs of the environment, acquire a systemic vision of problems and develop the capacity to solve them.

Right from the first semester, you will be participating in activities to develop your capacity to identify opportunities, find resources, take risks and recover from failure.

In addition, the model empowers you to make more decisions about your university studies as you progress, in order to develop a unique profile.

 

¿Qué es un Reto?

Es una oportunidad para aprender algo nuevo y afianzar lo que ya sabes. Para resolverlo requieres esforzarte, investigar e interactuar en el“mundo real”. No lo concretas solo: cuentas con un kit de recursos y herramientas personales y tecnológicas, así como con la asesoría de profesores que te acompañan en el proceso. Su resolución implica un cierto grado de dificultad y una duración que despierta el interés, entusiasma y provoca tu sentido de logro.

What is a challenge?

A challenge is an opportunity to learn something new and reinforce what you already know. To solve it, you need to apply yourself, investigate and interact in the “real world”. You won’t be on your own: you will have a set of personal and technological resources and tools, as well as the advice of faculty who will accompany you throughout the process. Its resolution implies a certain degree of difficulty and a duration that will awaken your interest and enthusiasm and produce a sense of achievement.

The three stages of the model

 

1 Acquire the basic knowledge of your area and face challenges to reinforce this knowledge.

2 Develop the competencies relevant to your degree through more focused courses and challenges.

3 Give a personal touch to your degree program through specialization within or outside your discipline.

Syllabus
-+
Please register here
You will receive personalized information and attention
I AM
phone

If you had already left us your information, please enter the same email with which you did it.

Select your preferred contact schedule
  • Select your preferred contact schedule
  • 10:00 am a 3:00 pm
  • 3:00 pm a 7:00 pm
CAMPUS OF INTEREST
Campus of interest
  • Campus of interest
  • Selecciona un campus
Help
Do you want to know how to secure your educational future?
I have read and agree to the terms and conditions of the
PRIVACY NOTICE from Tecnológico de Monterrey.
Alumnos escribiendo en pizarrón

Tec Model: Tec challenges you

Our educational model develops skills that will allow you to face current and future challenges.

It is challenging. Through challenging experiences, promote your ability to solve problems and visualize opportunities. Forge in you the character to lead and undertake, as well as the resilience to persevere, in addition to enhancing your integral development and your commitment to build a better world.

It is flexible in what, how, when and where you learn. Our model empowers you from the beginning so that you are the one who traces your path and builds your own graduation profile, aligning what you need with what you are interested in learning and preparing yourself for the challenges of the environment.

 

 

The three stages of the model

 

Acquire the basic knowledge of your area and face challenges to reinforce this knowledge.

Develop the competencies relevant to your degree through more focused courses and challenges.

Give a personal touch to your degree program through specialization within or outside your discipline.

Syllabus

-+
About the Group

This group works on the most pressing challenges of our society, including healthcare, climate change, economic development, security, and artificial intelligence. The group members develop applied research to support debate and discussion on policies, public decisions, and new research methods to address these problems.

The work of our group in these areas seeks to answer the following lines of research questions:

• What kinds of subsystems comprise a city? How do they interact, and how can they be monitored? How can we use that knowledge to develop more inclusive and sustainable cities?
• What kind of network structure exists in the economy, and how does it change over time? What information and models can we use to explore their behavior quantitatively? Is it possible to develop technology policies that leverage this knowledge to meet specific development objectives?
• How can we employ modern computational methods to study social systems? What patterns emerge when we analyze the behavior of social systems under millions of different assumptions about their structure? How can we employ these methods to distribute the resources of society and nature more efficiently? How can we use these methods to address the causes of inequality and poverty?
• What are the neural and cognitive processes of public decision-makers? Is it possible to employ computational methods to support decision processes effectively? What are the primary dilemmas in our major national debates?

 

Research lines

• Science of Cities
• Science of Networks and Complexity
• Computational Social Sciences
• Science of Decisions
• Public Entrepreneurship
• Public Policy and Government

Leader

Edmundo Molina Pérez - edmundo.molina@tec.mx
 

Members

Adolfo Javier De Unanue Tiscareño
Alejandra Macias
Alejandro Alfonso Poiré Romero
Carlos Elizondo Mayer Serra
Edgar Arturo Barroso Merino
Fabián Lozano García
Fernando Gómez
Grisel Ayllon
Isaac Molina
Hilda Zamora
Grisel Olivera
Gustavo Merino  
Luis Alberto Serra Barragán
Roberto Durán Fernández
Roberto Ponce López
Zeus Hiram Zamora Guevara

Most relevant publications

• Ponce-Lopez, Roberto, and Joseph Ferreira Jr. Identifying and characterizing popular non-work destinations by clustering cellphone and point-of-interest data. Cities 113 (2021): 103158.

• He, He, Roberto Ponce-Lopez, Jingsi Shaw, Diem-Trinh Le, Joseph Ferreira, and P. Christopher Zegras. Representing accessibility: Evidence from vehicle ownership choices and property valuations in Singapore. Transportation Research Record 2673, no. 2 (2019): 724-733.

• Basu, Rounaq, Joseph Ferreira, and Roberto Ponce-Lopez. A framework to generate virtual cities as sandboxes for land use-transport interaction models. Journal of Transport and Land Use 14, no. 1 (2021): 303-323.

• Olivera-Martínez, Grissel, and Adelaido García-Andrés. Infraestructura hospitalaria y personal médico del Sistema Público de Salud en México ante la pandemia por COVID-19. Ciencias Administrativas. Teoría y Praxis 17, no. 2 (2021): 85-105.

• Gómez-Zaldívar, Fernando, and Edmundo Molina-Perez. Evolution of the Productive Capabilities of Mexico: Economic Complexity Analysis for the Development of Special Economic Zones (SEZ). The International Trade Journal 35, no. 1 (2021): 4-18.

• Estrada, Luis, and Alejandro Poiré. The Mexican standoff: taught to protest, learning to lose. Journal of Democracy 18, no. 1 (2007): 73-87.

• Groves, David G., Edmundo Molina-Perez, Evan Bloom, and Jordan R. Fischbach. Robust Decision Making (RDM): Application to Water Planning and Climate Policy. In Decision Making under Deep Uncertainty, pp. 135-163. Springer, Cham, 2019.

• Serra-Barragán, Luis, Edmundo Molina-Perez, and Zeus Guevara. Energy and Environmental Policy and Economic Development. In Energy Issues and Transition to a Low Carbon Economy, pp. 31-57. Springer, Cham, 2022.

• Molina-Perez, E., Esquivel-Flores, O. A., & Zamora-Maldonado, H. (2020). Computational Intelligence for Studying Sustainability Challenges: Tools and Methods for Dealing With Deep Uncertainty and Complexity. Frontiers in Robotics and AI, 7, 111.

• Zamora-Maldonado, Hilda Consuelo, Véronique Sophie Avila-Foucat, Víctor Gelasio Sánchez-Sotomayor, and Raymond Lee. Social-ecological Resilience Modeling: Water Stress Effects in the Bighorn Sheep Management System in Baja California Sur, Mexico. Ecological Complexity 45 (2021): 100884.

Most relevant projects

• URBAN SPRAWL IN MONTERREY
Founder: Fundación FEMSA
Leader: Dr. Roberto Ponce
This project investigates the process of urban sprawl in Monterrey, quantifying the amount of land consumed and delving into the cost estimation of this pattern of urbanization for the public finances of the city. The project oversees the causes and consequences of urban sprawl in Mexico. Learn more here: https://www.expansionurbanamty.mx/

• An Implementation of SLEUTH as an Open Platform for Doing Scenario Planning to Predict Urban Growth
Founder: Fundación FEMSA
Leader: Dr. Roberto Ponce
This project proposes a ready to use implementation of a cellular automata for scenario planning applied to urban growth. The most observed geographical pattern of growth characterizing fast growing cities is sprawling. The urban land consumption per capita significantly increased, on average, in cities over the 1990-2000 and 2000 and 2014 periods, according to the Atlas of Urban Expansion. Urban sprawl has dire consequences on miles per vehicle traveled, CO2 and the provision of public services. The evidence has shown that reversing this trend requires decisive policy actions from local governments. The problem is that local governments, especially in developing countries, do not possess the human capital, technical proficiency and financial resources to develop a sophisticated and easy to test policy interventions under a framework of scenario planning. Our project addresses such limitations by reimplementing the SLEUTH model/ simulator developed by Keith C. Clarke, a tool for predicting urban growth that is well established in the literature.   

We have reimplemented the SLEUTH model/simulator to increase the access of local governments to scenario planning for urban growth through an easy and ready to use digital tool that works with open access data. SLEUTH is a cellular automaton that simulates 3 growth processes: spontaneous growth, edge growth, and road influence growth. Each growth phase is controlled by a set of parameters calibrated using past growth data. Three are the main limitations of current implementations of SLEUTH to be widely used by local governments and regions. First, the code of most implementations is written in C++, and does not follow modern and best practices for coding. Second, the model needs to be fed with satellite imagery and raster files on historic urbanized land, elevations, and roads access. Third, the process of calibrating the parameters to historical data is long, tedious, and not automated. These three elements are a barrier of entry for local governments without a developed technical capacity to do scenario planning for urban growth.

To address these limitations in SLEUTH, we built an interactive digital platform that performs remote data integration from Google Earth Engine to feed the satellite imagery and rasters into the SLEUTH model in an automated way, allowing a real time exploration of SLEUTH generated scenarios. We reimplemented SLEUTH program in Python to better integration with modern data formats and frameworks and facilitate experimenting and new feature development for SLEUTH based growth models.  We tested new calibration methods based on machine learning to improve SLEUTH's calibration speed. The platform simulates growth for all major cities in Latin America in an automated way, relying on open access platforms and data.

• Latin American Pathways to Net-Zero Greenhouse Gas Emissions
Leader: Dr. Edmundo Molina
Founder: Banco Interamericano de Desarrollo
RAND and Tecnológico de Monterrey have partnered to evaluate decarbonization plans in Costa Rica and Chile in recent years . In these studies, the research team applied Robust Decision Making (RDM) to develop and evaluate different scenarios of emissions with and without the implementation of the decarbonization actions roughly consistent with the countries’ Nationally Determined Contributions (NDCs). These studies then identified the key conditions that would lead the decarbonization strategies to hit or miss their emissions objectives.

This proposed study builds upon these two successful studies by (a) leveraging the tools already developed and (b) advancing our approach based on the many lessons learned. The study proposes to develop a novel integrated Latin America decarbonization model that estimates emissions and decarbonization net benefits by sector and country under a wide range of regional and country-specific futures. For example, our integrated model would ensure that consistent assumptions are made for factors that affect Latin American countries similarly, such as similar costs of imported technology. Then, RDM and this model will be used to develop plausible decarbonization pathways for each Latin American country, and the region as a whole, and identify the key uncertain trends that must be monitored and managed in order for the region to meet net zero emissions by 2050.

The research team of Tecnológico de Monterrey will assist the RAND team on carrying out stakeholder engagements, implementing the RDM framework and on gathering the needed information for estimating emissions and decarbonization net benefits, or to develop proxy approaches in the absence of data. This information will be integrated into the RDM-informed modeling and analysis. The final product will be based on an integrated analysis; in addition, the individual country modeling components will be shared with each country for their continued development and use.

• Advise and Support in LTS Exploratory Modeling to Support Countries in LTO Exploration and LTS Modeling
Leader: Dr. Edmundo Molina
Founder: Banco Mundial
Tecnologico de Monterrey will support the World Bank’s programmatic ASA, Long-term Low-Carbon Planning in Pilot Countries providing an exploratory decarbonization platform that can be used to estimate greenhouse gas emissions pathways for specific countries, based on the multi-sectorial specification of decarbonization strategies, and the estimation of the associated implementation costs and resulting broader societal benefits. Additionally, this platform will help the World Bank team explore how these pathways, costs and benefits vary with respect to different assumptions about long-term socio-economic, technological, and environmental conditions, as well as with respect to implementation progress of decarbonization strategies.

This effort will focus on five countries,  including Egypt, Turkey, Jordan, Uzbekistan and Dominican Republic. The TdM team will assembly the datasets required for carrying out the analyses and assist the World Bank team in configuring the modeling platform to the needs of each nation case study. The TdM team will also support the adoption of this platform by the World Bank team so they can use it more flexibly and update the analysis as needed.

• A cognitive modeling approach for understanding computational intelligence-human interactions in uncertain and complex decision-making environments
Leader: Dr. Edmundo Molina
Founder: US Air Force
Decision-making in complex and uncertain environments is a high-level individual or group process that depends on various cognitive, psychological, and social mechanisms, such as perception, attention, memory, abstract thinking, and debate. In particular, uncertain and complex environment require series of decisions to be made, with each decision depending on rapidly changing information, complex computational intelligence tools (CITs), detailed data analysis tasks and multiple agents’ perspectives.

There is limited empirical evidence that analyzes how CITs interact with decision makers in critical decision-making situations or that describes the cognitive and neurological mechanisms through which CITs influence individuals’ integrative complexity traits. We also do not have sufficient information that describes how is that CITs’ characteristics interact with decision makers’ own characteristics (e.g., group size, age, field of expertise). Finally, little is known about the potential externalities that CITs may have on decision-making in these types of environments, such as overreliance, mistrust, or model rejection.

To address these knowledge gaps, this study proposes to combine behavioral experimentation and neuroscientific methods to develop a cognitive model that describes the impact that CITs have on decisions being made in complex and uncertain environments. In particular, this study seeks to address the following research questions:

What is the marginal impact of CITs’ components on individuals’ cognitive bandwidth in complex and uncertain decision-making environments?
What is the marginal impact of CITs’ components on individuals’ level of integrative complexity in complex and uncertain decision-making environments?  
Under which combination of experimental parameters CITs have a positive impact on decision makers’ ability to deal with complex and uncertain environments?  
Under which combination of experimental parameters CITs impact positively individuals’ level of integrative complexity when dealing with a ambiguous or deeply uncertain problem?
Under which combination of experimental parameters CITs lead to mistrust, technological overreliance, model rejection or gridlock in complex and uncertain environments?  
Can the lessons learned in these experiments be generalized across different decision context?
This interdisciplinary approach can contribute to: i) objectively illustrate decision makers’ models of beliefs and values,, ii) identify the impact and mechanisms through which CITs influence individuals’ integrative complexity traits, iii) support CITs interventions in crisis situations, and iv) contribute to the development of modern decision sciences. Ultimately, this integrative approach can result in formal cognitive models of decision making under uncertainty and complexity that will grant the scientific community a deeper understanding of the mechanisms by which CITs and decision makers interact under rapidly evolving environments.

Sobre el Grupo

El grupo trabaja en los retos más apremiantes para nuestra sociedad, incluidos salud, cambio climático, desarrollo económico, seguridad e inteligencia artificial. Los integrantes del grupo desarrollan investigación aplicada para soportar procesos de debate y discusión sobre políticas y decisiones públicas, así como nuevos métodos de investigación para abordar estos problemas.

El trabajo de nuestro grupo en estas áreas busca responder las siguientes preguntas de investigación en cada una de estas líneas:

• ¿Qué tipo subsistemas constituyen a una ciudad? ¿Cómo interactúan y cómo pueden ser monitoreados? ¿Cómo podemos emplear ese conocimiento para desarrollar ciudades más inclusivas y sostenibles?
• ¿Qué tipo de estructura de red existe en la economía y cómo cambia en el tiempo? ¿Qué tipo de información y modelos podemos emplear para explorar de manera cuantitativa su comportamiento? ¿Es posible desarrollar políticas tecnológicas que aprovechen este conocimiento para cumplir objetivos de desarrollo específico?
• ¿Cómo podemos emplear los métodos computacionales modernos para estudiar sistemas sociales? ¿Qué tipo de patrones emergen cuando analizamos el comportamiento de sistemas sociales bajo millones de distintas suposiciones acerca de su estructura? ¿Cómo podemos emplear estos métodos para distribuir de manera más eficiente los recursos de la sociedad y la naturaleza? ¿Cómo podemos emplear estos métodos para atender las causas de la desigualdad y la pobreza?
• ¿Qué procesos neuronales y cognitivos describen la toma de decisiones agentes públicos? ¿Es posible emplear métodos computacionales para soportar procesos de decisión de manera efectiva? ¿Cuáles son las disyuntivas clave en nuestros grandes debates nacionales?

 

Líneas de investigación

• Ciencia de Ciudades
• Ciencia de Redes y Complejidad
• Ciencias Sociales Computacionales
• Ciencia de Decisiones
• Emprendimiento Público
• Política Pública y Gobierno

Líder

Edmundo Molina Pérez - edmundo.molina@tec.mx

 

Miembros

Adolfo Javier De Unanue Tiscareño
Alejandra Macias
Alejandro Alfonso Poiré Romero
Carlos Elizondo Mayer Serra
Edgar Arturo Barroso Merino
Fabián Lozano García
Fernando Gómez
Grisel Ayllon
Isaac Molina
Hilda Zamora
Grisel Olivera
Gustavo Merino  
Luis Alberto Serra Barragán
Roberto Durán Fernández
Roberto Ponce López
Zeus Hiram Zamora Guevara

 

Publicaciones más relevantes

• Ponce-Lopez, Roberto, and Joseph Ferreira Jr. Identifying and characterizing popular non-work destinations by clustering cellphone and point-of-interest data. Cities 113 (2021): 103158.

• He, He, Roberto Ponce-Lopez, Jingsi Shaw, Diem-Trinh Le, Joseph Ferreira, and P. Christopher Zegras. Representing accessibility: Evidence from vehicle ownership choices and property valuations in Singapore. Transportation Research Record 2673, no. 2 (2019): 724-733.

• Basu, Rounaq, Joseph Ferreira, and Roberto Ponce-Lopez. A framework to generate virtual cities as sandboxes for land use-transport interaction models. Journal of Transport and Land Use 14, no. 1 (2021): 303-323.

• Olivera-Martínez, Grissel, and Adelaido García-Andrés. Infraestructura hospitalaria y personal médico del Sistema Público de Salud en México ante la pandemia por COVID-19. Ciencias Administrativas. Teoría y Praxis 17, no. 2 (2021): 85-105.

• Gómez-Zaldívar, Fernando, and Edmundo Molina-Perez. Evolution of the Productive Capabilities of Mexico: Economic Complexity Analysis for the Development of Special Economic Zones (SEZ). The International Trade Journal 35, no. 1 (2021): 4-18.

• Estrada, Luis, and Alejandro Poiré. The Mexican standoff: taught to protest, learning to lose. Journal of Democracy 18, no. 1 (2007): 73-87.

• Groves, David G., Edmundo Molina-Perez, Evan Bloom, and Jordan R. Fischbach. Robust Decision Making (RDM): Application to Water Planning and Climate Policy. In Decision Making under Deep Uncertainty, pp. 135-163. Springer, Cham, 2019.

• Serra-Barragán, Luis, Edmundo Molina-Perez, and Zeus Guevara. Energy and Environmental Policy and Economic Development. In Energy Issues and Transition to a Low Carbon Economy, pp. 31-57. Springer, Cham, 2022.

• Molina-Perez, E., Esquivel-Flores, O. A., & Zamora-Maldonado, H. (2020). Computational Intelligence for Studying Sustainability Challenges: Tools and Methods for Dealing With Deep Uncertainty and Complexity. Frontiers in Robotics and AI, 7, 111.

• Zamora-Maldonado, Hilda Consuelo, Véronique Sophie Avila-Foucat, Víctor Gelasio Sánchez-Sotomayor, and Raymond Lee. Social-ecological Resilience Modeling: Water Stress Effects in the Bighorn Sheep Management System in Baja California Sur, Mexico. Ecological Complexity 45 (2021): 100884.

 

Proyectos más relevantes

• URBAN SPRAWL IN MONTERREY
Founder: Fundación FEMSA
Líder: Dr. Roberto Ponce
This project investigates the process of urban sprawl in Monterrey, quantifying the amount of land consumed and delving into the cost estimation of this pattern of urbanization for the public finances of the city. The project oversees the causes and consequences of urban sprawl in Mexico. Learn more here: https://www.expansionurbanamty.mx/

• An Implementation of SLEUTH as an Open Platform for Doing Scenario Planning to Predict Urban Growth
Founder: Fundación FEMSA
Líder: Dr. Roberto Ponce
This project proposes a ready to use implementation of a cellular automata for scenario planning applied to urban growth. The most observed geographical pattern of growth characterizing fast growing cities is sprawling. The urban land consumption per capita significantly increased, on average, in cities over the 1990-2000 and 2000 and 2014 periods, according to the Atlas of Urban Expansion. Urban sprawl has dire consequences on miles per vehicle traveled, CO2 and the provision of public services. The evidence has shown that reversing this trend requires decisive policy actions from local governments. The problem is that local governments, especially in developing countries, do not possess the human capital, technical proficiency and financial resources to develop a sophisticated and easy to test policy interventions under a framework of scenario planning. Our project addresses such limitations by reimplementing the SLEUTH model/ simulator developed by Keith C. Clarke, a tool for predicting urban growth that is well established in the literature.   

We have reimplemented the SLEUTH model/simulator to increase the access of local governments to scenario planning for urban growth through an easy and ready to use digital tool that works with open access data. SLEUTH is a cellular automaton that simulates 3 growth processes: spontaneous growth, edge growth, and road influence growth. Each growth phase is controlled by a set of parameters calibrated using past growth data. Three are the main limitations of current implementations of SLEUTH to be widely used by local governments and regions. First, the code of most implementations is written in C++, and does not follow modern and best practices for coding. Second, the model needs to be fed with satellite imagery and raster files on historic urbanized land, elevations, and roads access. Third, the process of calibrating the parameters to historical data is long, tedious, and not automated. These three elements are a barrier of entry for local governments without a developed technical capacity to do scenario planning for urban growth.

To address these limitations in SLEUTH, we built an interactive digital platform that performs remote data integration from Google Earth Engine to feed the satellite imagery and rasters into the SLEUTH model in an automated way, allowing a real time exploration of SLEUTH generated scenarios. We reimplemented SLEUTH program in Python to better integration with modern data formats and frameworks and facilitate experimenting and new feature development for SLEUTH based growth models.  We tested new calibration methods based on machine learning to improve SLEUTH's calibration speed. The platform simulates growth for all major cities in Latin America in an automated way, relying on open access platforms and data.

• Latin American Pathways to Net-Zero Greenhouse Gas Emissions
Líder: Dr. Edmundo Molina
Founder: Banco Interamericano de Desarrollo
RAND and Tecnológico de Monterrey have partnered to evaluate decarbonization plans in Costa Rica and Chile in recent years . In these studies, the research team applied Robust Decision Making (RDM) to develop and evaluate different scenarios of emissions with and without the implementation of the decarbonization actions roughly consistent with the countries’ Nationally Determined Contributions (NDCs). These studies then identified the key conditions that would lead the decarbonization strategies to hit or miss their emissions objectives.

This proposed study builds upon these two successful studies by (a) leveraging the tools already developed and (b) advancing our approach based on the many lessons learned. The study proposes to develop a novel integrated Latin America decarbonization model that estimates emissions and decarbonization net benefits by sector and country under a wide range of regional and country-specific futures. For example, our integrated model would ensure that consistent assumptions are made for factors that affect Latin American countries similarly, such as similar costs of imported technology. Then, RDM and this model will be used to develop plausible decarbonization pathways for each Latin American country, and the region as a whole, and identify the key uncertain trends that must be monitored and managed in order for the region to meet net zero emissions by 2050.

The research team of Tecnológico de Monterrey will assist the RAND team on carrying out stakeholder engagements, implementing the RDM framework and on gathering the needed information for estimating emissions and decarbonization net benefits, or to develop proxy approaches in the absence of data. This information will be integrated into the RDM-informed modeling and analysis. The final product will be based on an integrated analysis; in addition, the individual country modeling components will be shared with each country for their continued development and use.

• Advise and Support in LTS Exploratory Modeling to Support Countries in LTO Exploration and LTS Modeling
Líder: Dr. Edmundo Molina
Founder: Banco Mundial
Tecnologico de Monterrey will support the World Bank’s programmatic ASA, Long-term Low-Carbon Planning in Pilot Countries providing an exploratory decarbonization platform that can be used to estimate greenhouse gas emissions pathways for specific countries, based on the multi-sectorial specification of decarbonization strategies, and the estimation of the associated implementation costs and resulting broader societal benefits. Additionally, this platform will help the World Bank team explore how these pathways, costs and benefits vary with respect to different assumptions about long-term socio-economic, technological, and environmental conditions, as well as with respect to implementation progress of decarbonization strategies.

This effort will focus on five countries,  including Egypt, Turkey, Jordan, Uzbekistan and Dominican Republic. The TdM team will assembly the datasets required for carrying out the analyses and assist the World Bank team in configuring the modeling platform to the needs of each nation case study. The TdM team will also support the adoption of this platform by the World Bank team so they can use it more flexibly and update the analysis as needed.

• A cognitive modeling approach for understanding computational intelligence-human interactions in uncertain and complex decision-making environments
Líder: Dr. Edmundo Molina
Founder: US Air Force
Decision-making in complex and uncertain environments is a high-level individual or group process that depends on various cognitive, psychological, and social mechanisms, such as perception, attention, memory, abstract thinking, and debate. In particular, uncertain and complex environment require series of decisions to be made, with each decision depending on rapidly changing information, complex computational intelligence tools (CITs), detailed data analysis tasks and multiple agents’ perspectives.

There is limited empirical evidence that analyzes how CITs interact with decision makers in critical decision-making situations or that describes the cognitive and neurological mechanisms through which CITs influence individuals’ integrative complexity traits. We also do not have sufficient information that describes how is that CITs’ characteristics interact with decision makers’ own characteristics (e.g., group size, age, field of expertise). Finally, little is known about the potential externalities that CITs may have on decision-making in these types of environments, such as overreliance, mistrust, or model rejection.

To address these knowledge gaps, this study proposes to combine behavioral experimentation and neuroscientific methods to develop a cognitive model that describes the impact that CITs have on decisions being made in complex and uncertain environments. In particular, this study seeks to address the following research questions:

What is the marginal impact of CITs’ components on individuals’ cognitive bandwidth in complex and uncertain decision-making environments?
What is the marginal impact of CITs’ components on individuals’ level of integrative complexity in complex and uncertain decision-making environments?  
Under which combination of experimental parameters CITs have a positive impact on decision makers’ ability to deal with complex and uncertain environments?  
Under which combination of experimental parameters CITs impact positively individuals’ level of integrative complexity when dealing with a ambiguous or deeply uncertain problem?
Under which combination of experimental parameters CITs lead to mistrust, technological overreliance, model rejection or gridlock in complex and uncertain environments?  
Can the lessons learned in these experiments be generalized across different decision context?
This interdisciplinary approach can contribute to: i) objectively illustrate decision makers’ models of beliefs and values,, ii) identify the impact and mechanisms through which CITs influence individuals’ integrative complexity traits, iii) support CITs interventions in crisis situations, and iv) contribute to the development of modern decision sciences. Ultimately, this integrative approach can result in formal cognitive models of decision making under uncertainty and complexity that will grant the scientific community a deeper understanding of the mechanisms by which CITs and decision makers interact under rapidly evolving environments.

"In the event of a discrepancy between the content of the English version and the original Spanish version the latter shall prevail".

Identity and address of the responsible entity

The entity responsible for the personal information you provide is Instituto Tecnológico y de Estudios Superiores de Monterrey (hereinafter “ITESM”), operating at the address Av. Eugenio Garza Sada Sur No. 2501, Colonia Tecnológico, Monterrey, Nuevo León, Mexico, C.P. 64700.

Primary purposes

The data you provide will be used to verify your identity and provide you with the service you request.

ARCO rights and/or revocation of consent

You or your legal representative can exercise any of your rights of access, rectification, cancellation or opposition (hereinafter “ARCO rights”), and revoke your consent for the processing of your personal data by sending an email to the ITESM Department of Personal Data, at datospersonales@itesm.mx.

Further information on the procedures, requirements and deadlines for the exercise of your ARCO rights and/or revocation of consent can be found on our website https://tec.mx/en/arco-rights-andor-revocation-consent.

Limitation and/or Disclosure of your Data

You can limit the use or disclosure of your personal data by sending your request to: datospersonales@itesm.mx. If your request is valid, you will be added to ITESM’s exclusion list.

Changes to this Privacy Notice

ITESM will notify you of any changes to its privacy policy through the link https://tec.mx, where you can access the privacy notice.

Use of Cookies

We use cookies and other technologies on some of our webpages, which allows us to monitor your behavior as an Internet user and to provide you with a better service and experience on browsing our site. The personal data that can be obtained through the use of these technologies are: Identifiers, session usernames and passwords, region where you are located, type of browser, type of operating system, date and time of starting and finishing a session, webpages visited, searches completed and advertising reviewed. These technologies can be disabled by following the procedures of the internet browser you are using.

Identidad y domicilio del Responsable

El Responsable de los datos personales que usted proporciona en esta llamada es El Instituto Tecnológico y de Estudios Superiores de Monterrey con domicilio en Av. Eugenio Garza Sada Sur No. 2501, colonia Tecnológico en Monterrey, Nuevo León. C.P. 64700.

Finalidades primarias

Los datos que usted proporcione serán utilizados para verificar su identidad y proporcionarle el servicio que usted solicite.

Derechos ARCO y/o revocación del consentimiento

Usted o su representante legal podrá ejercer cualquiera de los derechos de acceso, rectificación, cancelación u oposición (en lo sucesivo "derechos arco"), así como revocar su consentimiento para el tratamiento de sus datos personales enviando un correo electrónico al Departamento de Datos Personales de ITESM a la dirección electrónica datospersonales@itesm.mx.

El procedimientos, requisitos y plazos para el ejercicio de sus Derechos ARCO y/o revocación del consentimiento puede consultarlo en nuestra página de internet https://tec.mx/es/derechos-arco-yo-revocacion-del-consentimiento.

Limitación y/o Divulgación de sus datos

Usted podrá limitar el uso o divulgación de sus datos personales enviando su solicitud a la ITESM a la dirección datospersonales@itesm.mx. En caso de que su Solicitud sea procedente se le registrará en el listado de exclusión propio de ITESM.

Cambios al Aviso de Privacidad

ITESM le notificará de cualquier cambio a su aviso de privacidad a través de la liga http://tec.mx y posteriormente accediendo a su aviso de privacidad.

Uso de Cookies

Le informamos que en algunas de nuestras páginas de internet utilizamos cookies y otras tecnologías, a través de las cuales es posible monitorear su comportamiento como usuario de internet, así como brindarle un mejor servicio y experiencia al navegar en nuestra página. Los datos personales que se pueden obtener a través del uso de estas tecnologías son los siguientes: Identificadores, nombre de usuario y contraseñas de una sesión, región en la que se encuentra, tipo de navegador, tipo de sistema operativo, fecha y hora del inicio y final de una sesión, páginas web visitadas, búsquedas realizadas  y publicidad revisada. Estas tecnologías podrán deshabilitarse siguiendo los procedimientos del navegador de internet que utiliza.