Pasar al contenido principal

Buscar

Decarbonization , Climate Change and Circular Economy

About the Group

The balance of the planet has been broken by population growth and voracious consumption, surpassing the speed with which the planet can cope. Therefore, it is necessary to develop technologies that allow the creation of strategies directed towards sustainability.
 

Research lines

• Development of scalable clean technologies as solutions to the decarbonization of the energy sector. Substitute energy sources/raw materials with low carbon sources.
• Circular economy, migration to net zero and positive effect on emissions.
• Equity and social perspective in technology projects.
• Capture of greenhouse gases and suspended solids.
• Application of data science and AI tools.

Leader

Alejandro Montesinos Castellanos - alejandro_montesinos@tec.mx
 

Members

Carlos Alberto Huerta Aguilar
Jorge Antonio Ascencio Gutiérrez
José Ignacio Huertas Cardozo
Juan Carlos Prince Avelino
Luis Ismael Minchala Avila
Miguel Ángel Gijón Rivera
Oliver Matthias Probst Oleszewski
Rafael Laurenti

Economía circular, descarbonización y cambio climático

Sobre el Grupo

El equilibrio del planeta se rompió con el crecimiento poblacional y la voracidad en el consumo sobrepasando la velocidad con la que el planeta se sobrepone. Por lo cual es necesario desarrollar tecnologías que permitan crear estrategias dirigidas hacia la sostenibilidad.


Líneas de investigación

• Desarrollo de tecnologías limpias escalables como soluciones a la descarbonización del sector energético. Sustituir fuentes de energía/materias primas con fuentes de bajo contenido de carbono.
• Economía circular, migración a net zero y a efecto positivo en emisiones.
• Equidad y perspectiva social en proyectos tecnológicos.
• Captura de gases de efecto invernadero y sólidos suspendidos.
• Aplicación de ciencia de datos y herramientas de IA.

Líder

Alejandro Montesinos Castellanos - alejandro_montesinos@tec.mx
 

Miembros

Carlos Alberto Huerta Aguilar
Jorge Antonio Ascencio Gutiérrez
José Ignacio Huertas Cardozo
Juan Carlos Prince Avelino
Luis Ismael Minchala Avila
Miguel Ángel Gijón Rivera
Oliver Matthias Probst Oleszewski
Rafael Laurenti

Advanced Artificial Intelligence

About the Group

The research group conducts basic and applied research in all aspects of artificial intelligence. In particular, it contributes to general knowledge in the following sub-disciplines: machine learning, computer vision, image processing, computational intelligence, hyper-heuristics, data visualization, and applies them to problem solving within contexts such as health, business, public safety, computer security, among others.

Because of its intersection with these areas, the group also influences the development and application of data science.
 

Research lines

• Machine learning    
• Computational intelligence and hyper-heuristics  
• Data science and applied mathematics
• Biomedical engineering

Leader

Raúl Monroy Borja - raulm@tec.mx
 

Co-leader

Juana Julieta Noguez Monroy - jnoguez@tec.mx
 

Members

César Torres Huitzil
Edgar Covantes Osuna
Gilberto Ochoa Ruiz
Gildardo Sánchez Ante
Hugo Terashima Marín
Iván Mauricio Amaya Contreras
Jesús Guillermo Falcón Cardona
Jorge Mario Cruz Duarte
José Antonio Cantoral Ceballos
José Carlos Ortíz Bayliss
Luciano García Bañuelos
Luis Ángel Trejo Rodríguez
Miguel González Mendoza
Rajesh Roshan Biswal
Salvador Miguel Hinojosa Cervantes
Santiago Enrique Conant Pablos


Postdoctoral researchers

Mariano Vargas Santiago
Bárbara Cervantes González
Víctor Adrián Sosa Hernández
Octavio Loyola González
Joanna Alvarado Uribe
Nestor Velasco Bermeo
José Benito Camiña Prado
Ari Yair Barrera Animas
Iván Mauricio Amaya Contreras
Alejandro Rosales Pérez
Andrés Eduardo Gutiérrez Rodríguez
Frumencio Olivas Álvarez
Jorge Mario Cruz Duarte

Most relevant publications

• Cruz-Duarte, J. M., Amaya, I., Ortiz-Bayliss, J. C., Conant-Pablos, S. E., Terashima-Marín, H., & Shi, Y. Hyper-heuristics to customise metaheuristics for continuous optimisation. Swarm and Evolutionary Computation, 66. 2021.

• Diaz-Ramos, R.E.; Gomez-Cravioto, D.A.; Trejo, L.A.; Figueroa López, C.; Medina-Pérez, M.A. Towards a Resilience to Stress Index Based on Physiological Response: A Machine Learning Approach. Sensors, 21, 8293. Special Issue: Sensors and Digital Solutions for Human Health and Health Risk Monitoring. 2021.

• Hinojosa, S., Oliva, D., Cuevas, E. et al. Reducing overlapped pixels: a multi-objective color thresholding approach. Soft Comput 24, 6787–6807 (2020).

• Pérez-Torres, R., Torres-Huitzil, C. and Galeana-Zapién, H.: An On-Device Cognitive Dynamic Systems Inspired Sensing Framework for the IoT. IEEE Commun. Mag. 56(9): 154-161. 2018

• Ortiz-Bayliss, J.-C., Amaya, I. and Cruz-Duarte, J.-M., Gutierrez-Rodriguez, A.-E., Conant Pablos, S.-E. and Terashima-Marin, H. A General Framework based on Machine Learning for Algorithm Selection in Constraint Satisfaction Problems. Applied Sciences, 11(6), pp. 1-16. 2021.

• Martínez-Díaz, Y., Nicolás-Díaz, M., Méndez-Vázquez, H., Luevano, L. S., Chang, L., Gonzalez-Mendoza, M., Sucar, L. E. Benchmarking lightweight face architectures on specific face recognition scenarios. Artif Intell Rev 54, 6201–6244. 2021.

• Oliva, D., Hinojosa, S., Osuna-Enciso, V., Cuevas, E., Pérez-Cisneros, M., & Sanchez-Ante, G. Image segmentation by minimum cross entropy using evolutionary methods. Soft Computing, 23(2), 431-450. 2019.

• Falcón-Cardona, J.-G., Ishibuchi, H., Coello Coello, C.-A. and Michael Emmerich. Título del artículo: On the Effect of the Cooperation of Indicator-Based Multi-objective Evolutionary Algorithms. Revista: IEEE Transactions on Evolutionary Computation. 25(4): 681-695. 2021.

• Angeles-Ceron, J.-C., Ochoa-Ruiz, G., Chang, L. and Ali, S. Real-time Instance Segmentation of Surgical Instruments using Attention and Multi-scale Feature Fusion, Under review at Medical Image Analysis, 2021.

• J. Rodríguez, J.-I. Mata-Sánchez, R. Monroy, O. Loyola-González, A. López-Cuevas. A one-class classification approach for bot detection on Twitter. Computers and Security 91, April 2020, article 101715 © Elsevier, 2020 ** 2021 Rómulo Garza's best paper award **

 

Most relevant projects

Intelligence Artificielle pour la generation de microfictions littéraires (GenMicFic).
Raúl Monroy Borja (co-principal investigator). SEP - CONACYT - ANUIES - ECOS NORD Francia. Generación de microficciones, un género literario, mediante el uso de aprendizaje profundo, en particular transformadores (GPT-3) y SBERT. El mecanismo considera los elementos de un relato (inicio, desarrollo y conclusión), así como una variedad  de condiciones, tales como coherencia y narrativa en tercera persona.

Proyecto Context-Aware Video Detection and Interpretation of Suspicious Behavior Using Distributed Robust Deep Learning
In collaboration with Dr. Paul Rad and Dr. David Han of the University of Texas at San Antonio.
Principal Investigator: Hugo Terashima Marín. Fondo Tec-UTSA $40000USD.
The proposed intelligent image/video analytics technology will allow users to: Search for images/videos by identifying not only objects but also structured relationships and attributes involving these objects, like: “find an image or video in which a man is carrying a bomb in the airport”; Understand the consistency between textual features and visual contents; Recognize all of the connections and effects between deep extracted features and retrieve images by considering all the dependencies of features; Identify and tag meaningful high-level situation descriptions presented in the retrieved video, like a person threatening another with a weapon, a person playing with a pet, etc.; and Based on results of previous objectives, work along a methodology for searching for meaningful features in order to detect suspicious behavior in video for a particular context.

One Step closer to mental health: promptly detection of depression with wearables technology and voice analysis.
Principal Investigator: Luis Angel Trejo Rodríguez.
Symptoms of depression can be detected with machine learning algorithms techniques, using heart rate variability, sleeping patterns, type of personality and physical activity as attributes. The main objective is to develop an intelligent system to detect in time, through wearables, voice analysis, and machine learning, levels of depression of high risk in the final user.

Space-time laminar computing: event-based spike neuromorphic processors for sensory computation.
Principal Investigator: César Torres Huitzil.
Computing in its diverse forms has become essential to most aspects of modern life, but it still fails in some of the basic tasks that biological systems (humans) perform easily and efficiently, such as perception, motor control, language processing, etc. Far beyond “intelligence”, computing based on current single-processor architectures and the associated semiconductor technology are facing fundamental physical limits (scalability, power consumption, process variations, noise margins, and fault tolerance, etc.) that prevent them achieving better performances only through improved processor technologies. The aim of this project is to provide the knowledge to develop a new class of event-driven spike neuroprocessors aimed at power efficient sensory computation under a neuro-inspired space-time laminar computational framework.

Feature transformation for improving characterization of combinatorial optimization problems. Sectoral research fund for general education (CONACyT).
José Carlos Ortiz Bayliss, Research Associate.
The project seeks to improve the descriptive capabilities of hyper-heuristics by transforming the characterization of the problems they solve.

Robust Surgical Tool Segmentation, Tracking and Depth Perception.
Gilberto Ochoa Ruiz in collaboration with Dr. Sharib Ali, from the University of Leeds (United Kingdom).
To develop new datasets, schemes and models for implement robust and real-time computer vision methods for Computer Integrated Surgery (CIS) applications and procedural quality assessment purposes. Students: Mansoor Ali Teevno.

RECONDITE: Deep learning and image analysis methods for improving the endoscopic identification of kidney stones composition.
Gilberto Ochoa Ruiz in collaboration with Prof. Christian Daul the Centre de Recherche en Automatique de Nancy, CRAN (France) and the Institut National de la Santé et de la Recherche Medicale (INSERM).
To investigate deep learning algorithms for automatically classifying in vivo kidney stones from endoscopy images. Students: Francisco Lopez Tiro, Daniel Florez Araiza.

ISOLATE: SegmentatIon and claSsification Of vascuLar pATtern symmEtries on cerebral vessels using DL.
Gilberto Ochoa Ruiz in collaboration with Dr. Christian Mata Miquel and Prof. Enrique Benitez from the Biomedical Engineering Research Center (CREB, Barcelona) of the Universitat Politecnica de Catalunya (Spain) and the Hospital Sant Joan de Deu (Barcelona).
To develop novel CADx tools for aiding physicians in the diagnosis of CP. Various algorithms for vessel segmentation and skeletonization have been explored and tested. The results of these preprocessing methods are to be used for classifying vascular pattern asymmetries.

Business relationship

Arca Continental, Santiago E. Conant Pablos (investigador principal), IDEA: Innovación Mediante Ciencia de Datos e Inteligencia Artificial para Mejorar los Indicadores Clave de Negocio en Clientes del Canal Tradicional, 2019 - 2020.
Google Inc. - APRU, Raúl Monroy Borja (experto) AI for all, 2017 - 2018.
Google Inc., Raúl Monroy Borja (investigador principal) Formal Verification of Web Applications, 2015 - 2016.
NIC - México, Raúl Monroy Borja (investigador principal) Dynamic Networks and Metrics for Ad Efficiency Ratings, 2017 - 2019.
NIC - México, Raúl Monroy Borja (investigador principal) Countermeasures for DDoS Attacks Targeting the Domain Name System, 2017 - 2019.

Inteligencia artificial avanzada

Sobre el Grupo

El grupo de investigación en inteligencia artificial avanzada realiza investigación básica y aplicada en todos los aspectos de inteligencia artificial. En particular, contribuye al conocimiento general en las siguientes subdisciplinas: aprendizaje máquina, visión por computadora, procesamiento de imágenes, inteligencia computacional, hiper-heurísticas, visualización de datos, y las aplica en la solución de problemas dentro de contextos como salud, negocios, seguridad pública, seguridad informática, entre otros.

Dada su intersección con las áreas arriba mencionadas, nuestro grupo también influye en el desarrollo y aplicación de la ciencia de datos.
 

Líneas de investigación

• Aprendizaje máquina    
• Inteligencia computacional e híper-heurísticas  
• Ciencia de datos y matemáticas aplicadas
• Ingeniería biomédica

Líder

Raúl Monroy Borja - raulm@tec.mx

Co-líder

Juana Julieta Noguez Monroy - jnoguez@tec.mx
 

Miembros

César Torres Huitzil
Edgar Covantes Osuna
Gilberto Ochoa Ruiz
Gildardo Sánchez Ante
Hugo Terashima Marín
Iván Mauricio Amaya Contreras
Jesús Guillermo Falcón Cardona
Jorge Mario Cruz Duarte
José Antonio Cantoral Ceballos
José Carlos Ortíz Bayliss
Luciano García Bañuelos
Luis Ángel Trejo Rodríguez
Miguel González Mendoza
Rajesh Roshan Biswal
Salvador Miguel Hinojosa Cervantes
Santiago Enrique Conant Pablos


Investigadores posdoctorales

Mariano Vargas Santiago
Bárbara Cervantes González
Víctor Adrián Sosa Hernández
Octavio Loyola González
Joanna Alvarado Uribe
Nestor Velasco Bermeo
José Benito Camiña Prado
Ari Yair Barrera Animas
Iván Mauricio Amaya Contreras
Alejandro Rosales Pérez
Andrés Eduardo Gutiérrez Rodríguez
Frumencio Olivas Álvarez
Jorge Mario Cruz Duarte

Publicaciones más relevantes

• Cruz-Duarte, J. M., Amaya, I., Ortiz-Bayliss, J. C., Conant-Pablos, S. E., Terashima-Marín, H., & Shi, Y. Hyper-heuristics to customise metaheuristics for continuous optimisation. Swarm and Evolutionary Computation, 66. 2021.

• Diaz-Ramos, R.E.; Gomez-Cravioto, D.A.; Trejo, L.A.; Figueroa López, C.; Medina-Pérez, M.A. Towards a Resilience to Stress Index Based on Physiological Response: A Machine Learning Approach. Sensors, 21, 8293. Special Issue: Sensors and Digital Solutions for Human Health and Health Risk Monitoring. 2021.

• Hinojosa, S., Oliva, D., Cuevas, E. et al. Reducing overlapped pixels: a multi-objective color thresholding approach. Soft Comput 24, 6787–6807 (2020).

• Pérez-Torres, R., Torres-Huitzil, C. and Galeana-Zapién, H.: An On-Device Cognitive Dynamic Systems Inspired Sensing Framework for the IoT. IEEE Commun. Mag. 56(9): 154-161. 2018

• Ortiz-Bayliss, J.-C., Amaya, I. and Cruz-Duarte, J.-M., Gutierrez-Rodriguez, A.-E., Conant Pablos, S.-E. and Terashima-Marin, H. A General Framework based on Machine Learning for Algorithm Selection in Constraint Satisfaction Problems. Applied Sciences, 11(6), pp. 1-16. 2021.

• Martínez-Díaz, Y., Nicolás-Díaz, M., Méndez-Vázquez, H., Luevano, L. S., Chang, L., Gonzalez-Mendoza, M., Sucar, L. E. Benchmarking lightweight face architectures on specific face recognition scenarios. Artif Intell Rev 54, 6201–6244. 2021.

• Oliva, D., Hinojosa, S., Osuna-Enciso, V., Cuevas, E., Pérez-Cisneros, M., & Sanchez-Ante, G. Image segmentation by minimum cross entropy using evolutionary methods. Soft Computing, 23(2), 431-450. 2019.

• Falcón-Cardona, J.-G., Ishibuchi, H., Coello Coello, C.-A. and Michael Emmerich. Título del artículo: On the Effect of the Cooperation of Indicator-Based Multi-objective Evolutionary Algorithms. Revista: IEEE Transactions on Evolutionary Computation. 25(4): 681-695. 2021.

• Angeles-Ceron, J.-C., Ochoa-Ruiz, G., Chang, L. and Ali, S. Real-time Instance Segmentation of Surgical Instruments using Attention and Multi-scale Feature Fusion, Under review at Medical Image Analysis, 2021.

• J. Rodríguez, J.-I. Mata-Sánchez, R. Monroy, O. Loyola-González, A. López-Cuevas. A one-class classification approach for bot detection on Twitter. Computers and Security 91, April 2020, article 101715 © Elsevier, 2020 ** 2021 Rómulo Garza's best paper award **

Proyectos más relevantes

Intelligence Artificielle pour la generation de microfictions littéraires (GenMicFic).
Raúl Monroy Borja (co-investigador principal). SEP - CONACYT - ANUIES - ECOS NORD Francia.
Generación de microficciones, un género literario, mediante el uso de aprendizaje profundo, en particular transformadores (GPT-3) y SBERT. El mecanismo considera los elementos de un relato (inicio, desarrollo y conclusión), así como una variedad  de condiciones, tales como coherencia y narrativa en tercera persona.

Context-Aware Video Detection and Interpretation of Suspicious Behavior Using Distributed Robust Deep Learning
En colaboración con el Dr. Paul Rad y Dr. David Han de la Universidad de Texas en San Antonio. Investigador Principal: Hugo Terashima Marín. Fondo Tec-UTSA $40000USD.
The proposed intelligent image/video analytics technology will allow users to: Search for images/videos by identifying not only objects but also structured relationships and attributes involving these objects, like: “find an image or video in which a man is carrying a bomb in the airport”; Understand the consistency between textual features and visual contents; Recognize all of the connections and effects between deep extracted features and retrieve images by considering all the dependencies of features; Identify and tag meaningful high-level situation descriptions presented in the retrieved video, like a person threatening another with a weapon, a person playing with a pet, etc.; and Based on results of previous objectives, work along a methodology for searching for meaningful features in order to detect suspicious behavior in video for a particular context.

One Step closer to mental health: promptly detection of depression with wearables technology and voice analysis.
Investigador principal: Luis Angel Trejo Rodríguez.
Symptoms of depression can be detected with machine learning algorithms techniques, using heart rate variability, sleeping patterns, type of personality and physical activity as attributes. The main objective is to develop an intelligent system to detect in time, through wearables, voice analysis, and machine learning, levels of depression of high risk in the final user.

Space-time laminar computing: event-based spike neuromorphic processors for sensory computation.
Investigador principal: César Torres Huitzil.
Computing in its diverse forms has become essential to most aspects of modern life, but it still fails in some of the basic tasks that biological systems (humans) perform easily and efficiently, such as perception, motor control, language processing, etc. Far beyond “intelligence”, computing based on current single-processor architectures and the associated semiconductor technology are facing fundamental physical limits (scalability, power consumption, process variations, noise margins, and fault tolerance, etc.) that prevent them achieving better performances only through improved processor technologies. The aim of this project is to provide the knowledge to develop a new class of event-driven spike neuroprocessors aimed at power efficient sensory computation under a neuro-inspired space-time laminar computational framework.

Feature transformation for improving characterization of combinatorial optimization problems. Fondo sectorial de investigación para la educación general (CONACyT).
José Carlos Ortiz Bayliss, investigador adjunto.
El proyecto busca mejorar las capacidades descriptivas de las hiper-heurísticas mediante la transformación de la caracterización de los problemas que resuelven.

Robust Surgical Tool Segmentation, Tracking and Depth Perception. Gilberto Ochoa Ruiz in collaboration with Dr. Sharib Ali, from the University of Leeds (United Kingdom).
To develop new datasets, schemes and models for implement robust and real-time computer vision methods for Computer Integrated Surgery (CIS) applications and procedural quality assessment purposes. Students: Mansoor Ali Teevno.

RECONDITE: Deep learning and image analysis methods for improving the endoscopic identification of kidney stones composition.
Gilberto Ochoa Ruiz in collaboration with Prof. Christian Daul the Centre de Recherche en Automatique de Nancy, CRAN (France) and the Institut National de la Santé et de la Recherche Medicale (INSERM).
To investigate deep learning algorithms for automatically classifying in vivo kidney stones from endoscopy images. Students: Francisco Lopez Tiro, Daniel Florez Araiza.

ISOLATE: SegmentatIon and claSsification Of vascuLar pATtern symmEtries on cerebral vessels using DL.
Gilberto Ochoa Ruiz in collaboration with Dr. Christian Mata Miquel and Prof. Enrique Benitez from the Biomedical Engineering Research Center (CREB, Barcelona) of the Universitat Politecnica de Catalunya (Spain) and the Hospital Sant Joan de Deu (Barcelona).
To develop novel CADx tools for aiding physicians in the diagnosis of CP. Various algorithms for vessel segmentation and skeletonization have been explored and tested. The results of these preprocessing methods are to be used for classifying vascular pattern asymmetries.

Vinculación empresarial

Arca Continental, Santiago E. Conant Pablos (investigador principal), IDEA: Innovación Mediante Ciencia de Datos e Inteligencia Artificial para Mejorar los Indicadores Clave de Negocio en Clientes del Canal Tradicional, 2019 - 2020.
Google Inc. - APRU, Raúl Monroy Borja (experto) AI for all, 2017 - 2018.
Google Inc., Raúl Monroy Borja (investigador principal) Formal Verification of Web Applications, 2015 - 2016.
NIC - México, Raúl Monroy Borja (investigador principal) Dynamic Networks and Metrics for Ad Efficiency Ratings, 2017 - 2019.
NIC - México, Raúl Monroy Borja (investigador principal) Countermeasures for DDoS Attacks Targeting the Domain Name System, 2017 - 2019.

EXATEC Arquitectos

Asociación EXATEC Arquitectos

Mesa directiva

Gabriela Palomera Palomares - Presidenta
Carlos Fernando Narváez Cantú - Vicepresidente
José Carlos Villanueva Gutiérrez - Secretario
Marcos Alberto Almaguer Vargas - Tesorero
Miguel Ángel Gutiérrez Pérez - Tesorero
Edna Lucía Garza Tijerina - Coordinadora de Filantropía
Diego Sergio Hernández García - Coordinación de Comunicación y Relaciones Públicas

EXATEC Campeche

Asociación EXATEC Campeche

Mesa directiva

María Teresita Martínez Rodríguez - Presidenta
José Roberto Quijano Zavala - Vicepresidente
Jaina Maria Euan Colli - Secretaria
Juan Jesus Velazquez Monterrubio - Tesorero
Arlette Guadalupe Zárate Cáceres - Coordinadora de Comunicación y Relaciones
Julio Cesar Garcia Fajardo - Coordinador de Filantropía

Descripción

Nuestros propósitos son establecer una relación permanente entre los miembros de la comunidad EXATEC Campeche a través de la facilitación de una plataforma generadora de oportunidades de negocios, y promover y acercar al Tecnológico de Monterrey a toda persona que busque oportunidades de desarrollo profesional y educación continua.

Estamos comprometidos a cumplir con las metas propuestas con estricta ética y con gran sentido humano, actuando con liderazgo, espíritu emprendedor y sobre todo con alta responsabilidad. En la asociación queremos participar como agentes de cambio con estrategias innovadoras para incidir en el desarrollo integral de Campeche mediante sinergias con nuestra alma mater, el Gobierno estatal y municipal, la iniciativa privada y los organismos no gubernamentales.

La asociación en Campeche fue creada en 1982.

EXATEC Cd. Obregón

Asociación EXATEC Cd Obregón

Mesa directiva

Jesús Rubén Salazar Rebolloso - Presidente
Enrique Romo Morales - Vicepresidente
Ana Lourdes Navarrete Encinas - Secretaria
Bernardo Alcantar Ramírez - Tesorero
Javier Ojeda Ross - Mercadotecnia e Imagen
María Elena Moreno Apodaca - Acciones por México (Filantropía)

Descripción

El principal objetivo de esta asociación es la generación y administración de la red de egresados de Tecnológico de Monterrey en el sur de Sonora.

En 1997 se creó la asociación en Cd. Obregón. 

EXATEC Chihuahua

Asociación EXATEC Chihuahua

Mesa directiva

Héctor Nabucodonosor Neira Villarreal - Presidente
Rene Xavier Chavira Venzor - Vicepresidente
Eduardo Turati Muñoz - Secretario
Nancy Berenice González Cruz - Tesorera

Descripción

El compromiso de la red de filantropía y la asociación EXATEC Chihuahua de transformar nuestro país es muy fuerte.

Queremos que más jóvenes chihuahuenses tengan la oportunidad de cambiar el rumbo de su vida, de su comunidad y de nuestro estado.

No lo podemos lograr solos, por eso necesitamos tu ayuda.

EXATEC del Sureste

Asociación EXATEC Del Sureste

Mesa directiva

María Eugenia Culebro Pérez - Presidenta
Andrés Zuart Gris - Vicepresidente
Adriana Ocampo García - Secretaria
Cristian de Jesús Rojas Ramírez - Tesorero

Descripción

Nuestro propósito es generar vínculos para fortalecer los lazos entre los egresados del Tecnológico de Monterrey presentes en nuestro estado de Chiapas, a través de canales eficientes de comunicación que fomenten la participación de egresados en actividades de su interés orientadas hacia el desarrollo económico, político, social y cultural de la comunidad.

En 2009 se creó la asociación.

EXATEC EGADE Business School

Asociación EXATEC EGADE

Mesa directiva

Richard Hugh Colter Siller - Presidente
Fernando Alberto Zamarron Ruiz - Tesorero
María Guadalupe Vazquez Cardozo - Secretaría
Anel Reyes Ledezma - Líder de Comunicación y Relaciones Públicas
Manuel Morales Ancira - Líder de Filantripía
Tomas Humberto Cortes Hernandez - Líder de Iniciativas
Gabriela Espinosa - Líder del Capítulo CDMX
Rodrigo Rivera Cruz - Líder del Capítulo Querétaro

Descripción

En 2010 se creó la Asociación