

Institute of Advanced Materials for Sustainable Manufacturing

Design and Development of a 3D Bioprinter Based on a Robotic Manipulator for Arbitrarily Shaped Scaffolds in Tissue Engineering Applications Ayala Roldán, Diana Paola; Chairez Oria, Isaac; Hernandez Sanchez, Alejandra

Tecnológico de Monterrey

- Tissue engineering focuses on creating customized tissues and organs for patients.
- **3D bioprinters** are essential for **producing complex scaffolds** that **replicate** human **tissue**.

Objective: designing and developing a **3D bioprinter** using a **robotic manipulator** to create **arbitrarily shaped scaffolds** tailored for tissue engineering.

RESULTS & DISCUSSION

- The bioprinter effectively produces complex tissue-minicking scaffolds.
- The **computer vision** system allows for precise and adaptable **in situ control**.
- Mechanical components are fully functional, ensuring reliable performance.
- The extrusion system operates
 successfully, supporting efficient
 material deposition.
- Casing development is almost complete, providing a robust enclosure.
- Viability tests are in the final stages,

Bioprinter: A **3D printing device** that uses **biocompatible materials**, including cells, to create structures that **mimic natural tissues** for medical applications.

MATERIALS AND METHOD

- 5-DOF robotic arm controlled by a computer vision system.
- Prints scaffolds with simulated bioinks similar to lab-grade.
- Robotic arm **enables complex, customized shapes**.
- System programmed in MATLAB.

validating the system's potential for realworld applications.

CONCLUSION

The developed bioprinter has proven to be an effective tool for creating personalized scaffolds. Its ability to generate complex structures positions it as a promising technology in tissue engineering. Future improvements could include enhancing precision controls and optimizing printing times.

ACKNOWLEDGEMENTS

Special thanks to Dr. Isaac Chairez and Dr. Alejandra Hernandez for their guidance throughout this project, and to the Tecnológico Institute for the support provided.

BIBLIOGRAPHY

Ayala Roldán, D. P., Chairez Oria, I., & Hernández, A. (2023). Advances in bioprinter technology: Revolutionizing tissue engineering (pending revision).