

Institute of Advanced Materials for Sustainable Manufacturing

Tailored Industrial Solar Solutions: Enhancing Safety and Efficiency through Generative Al

#12

Citlaly Pérez Briceño¹, Mario Rojas¹, Isabel Mendez¹, Pedro Ponce¹, and Qipei Mei²

¹Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, ²Civil and Environmental Engineering Department, University of Alberta.

INTRODUCTION

RESULTS AND DISCUSSION

Context and Motivation

With the depletion of fossil fuels and increasing environmental concerns, solar photovoltaic (PV) systems have emerged as a crucial renewable energy source. Traditional solar systems, however, often lack optimization for industrial applications where specific conditions and requirements vary significantly.

Objective

This study introduces a Generative Al-based framework aimed at customizing industrial PV systems. By using AI, the framework addresses safety, security, and performance tailored to the unique needs of industrial settings, ensuring compliance with **international** standards and contributing to a more sustainable energy landscape.

MATERIALS AND METHODOLOGY

Materials

- The research utilized ChatGPT to create the *Tailoring PV Systems* Solution API.
- This API integrates real-time data inputs, safety protocols, and environmental monitoring, leveraging AI to provide customized recommendations.

Challenges

 The implementation of AI in PV systems revealed challenges related to data privacy, algorithmic biases, and technical scalability, which need to be addressed for broader adoption.

CONCLUSIONS

- GAI provides an innovative solution for customizing solar PV systems in industrial settings, directly contributing to sustainability goals by optimizing energy production and enhancing safety.
- The integration of GAI with IoT and smart grid technologies holds promise for further advancements, enabling more precise energy forecasting, real-time adaptation, and scalability across different industrial contexts.
- This work illustrates the transformative potential of AI in renewable energy, paving the way for safer, more efficient, and customized solar solutions.

BIBLIOGRAPHY

- Abdelaal, O. (2024, January 12). Design a Modular AI: From Theory to Practice in Machine Learning Code Architecture. Medium.
- Abdulla, H., Sleptchenko, A., & Nayfeh, A. (2024). Photovoltaic systems operation and maintenance: A review and Renewable Sustainable 114342. directions. Energy Reviews, 195, future and https://doi.org/10.1016/j.rser.2024.114342 Alam, M. M., Alshahrani, T., Khan, F., Hakami, J., Shinde, S. M., & Azim, R. (2023). Al-based efficiency analysis technique for photovoltaic renewable energy system. Physica Scripta, 98(12), 126006. https://doi.org/10.1088/1402-4896/ad0bb4 Nain, P., & Anctil, A. (2024). End-of-life solar photovoltaic waste management: A comparison as per European Union and United States regulatory approaches. Resources, Conservation & Recycling Advances, 21, 200212. https://doi.org/10.1016/j.rcradv.2024.200212 Patel, D., Lin, S., Shah, D., Jayaraman, S., Ploennigs, J., Bhamidipati, A., & Kalagnanam, J. (2023). AI Model Factory: Scaling AI for Industry 4.0 Applications. Proceedings of the AAAI Conference on Artificial Intelligence, 37(13), Article 13. https://doi.org/10.1609/aaai.v37i13.27081 Qadir, J. (2023). Engineering Education in the Era of ChatGPT: Promise and Pitfalls of Generative AI for Education. 2023 IEEE Global Engineering (EDUCON), Education 1–9. Conference https://doi.org/10.1109/EDUCON54358.2023.10125121

Methodology

ACKNOWLEDGEMENTS

The authors acknowledge the technical and financial support of the Institute of Advanced Materials for Sustainable Manufacturing and the Tecnologico de Monterrey in producing this work.